16 research outputs found

    Chemical pathways in ultracold reactions of SrF molecules

    Full text link
    We present a theoretical investigation of the chemical reaction SrF + SrF \rightarrow products, focusing on reactions at ultralow temperatures. We find that bond swapping, SrF + SrF \rightarrow Sr2_2 + F2_2, is energetically forbidden at these temperatures. Rather, the only energetically allowed reaction is SrF + SrF \rightarrow SrF2_2 + Sr, and even then only singlet states of the SrF2_2 trimer can form. A calculation along a reduced reaction path demonstrates that this abstraction reaction is barrierless, and proceeds by one SrF molecule "handing off" a fluorine atom to the other molecule.Comment: Two column format, 7 pages, 3 figures. Submitted to PR

    Resonances in rotationally inelastic scattering of OH(X2ΠX^2\Pi) with helium and neon

    Get PDF
    We present detailed calculations on resonances in rotationally and spin-orbit inelastic scattering of OH (X\,^2\Pi, j=3/2, F_1, f) radicals with He and Ne atoms. We calculate new \emph{ab initio} potential energy surfaces for OH-He, and the cross sections derived from these surfaces compare favorably with the recent crossed beam scattering experiment of Kirste \emph{et al.} [Phys. Rev. A \textbf{82}, 042717 (2010)]. We identify both shape and Feshbach resonances in the integral and differential state-to-state scattering cross sections, and we discuss the prospects for experimentally observing scattering resonances using Stark decelerated beams of OH radicals.Comment: 14 pages, 15 Figure

    Scattering of Stark-decelerated OH radicals with rare-gas atoms

    Get PDF
    We present a combined experimental and theoretical study on the rotationally inelastic scattering of OH (X\,^2\Pi_{3/2}, J=3/2, f) radicals with the collision partners He, Ne, Ar, Kr, Xe, and D2_2 as a function of the collision energy between 70\sim 70 cm1^{-1} and 400~cm1^{-1}. The OH radicals are state selected and velocity tuned prior to the collision using a Stark decelerator, and field-free parity-resolved state-to-state inelastic relative scattering cross sections are measured in a crossed molecular beam configuration. For all OH-rare gas atom systems excellent agreement is obtained with the cross sections predicted by close-coupling scattering calculations based on accurate \emph{ab initio} potential energy surfaces. This series of experiments complements recent studies on the scattering of OH radicals with Xe [Gilijamse \emph{et al.}, Science {\bf 313}, 1617 (2006)], Ar [Scharfenberg \emph{et al.}, Phys. Chem. Chem. Phys. {\bf 12}, 10660 (2010)], He, and D2_2 [Kirste \emph{et al.}, Phys. Rev. A {\bf 82}, 042717 (2010)]. A comparison of the relative scattering cross sections for this set of collision partners reveals interesting trends in the scattering behavior.Comment: 10 pages, 5 figure
    corecore